48 research outputs found

    Sensible introduction of MR-guided radiotherapy: A warm plea for the RCT

    Get PDF
    Magnetic resonance guided radiotherapy (MRgRT) is the newest face of technology within a field long-characterized by continual technologic advance. MRgRT may offer improvement in the therapeutic index of radiation by offering novel planning types, like online adaptation, and improved image guidance, but there is a paucity of randomized data or ongoing randomized controlled trials (RCTs) to demonstrate clinical gains. Strong clinical evidence is needed to confirm the theoretical advantages of MRgRT and for the rapid dissemination of (and reimbursement for) appropriate use. Although some future evidence for MRgRT may come from large registries and non-randomized studies, RCTs should make up the core of this future data, and should be undertaken with thoughtful preconception, endpoints that incorporate patient-reported outcomes, and warm collaboration across existing MRgRT platforms. The advance and future success of MRgRT hinges on collaborative pursuit of the RCT

    Patterns of utilization and clinical adoption of 0.35 Tesla MR-guided radiation therapy in the United States - Understanding the transition to adaptive, ultra-hypofractionated treatments

    Get PDF
    PURPOSE/OBJECTIVE: Magnetic resonance-guided radiation therapy (MRgRT) utilization is rapidly expanding worldwide, driven by advanced capabilities including continuous intrafraction visualization, automatic triggered beam delivery, and on-table adaptive replanning (oART). Our objective was to describe patterns of 0.35Tesla(T)-MRgRT (MRIdian) utilization in the United States (US) among early adopters of this novel technology. MATERIALS/METHODS: Anonymized administrative data from all US MRIdian treatment systems were extracted for patients completing treatment from 2014 to 2020. Detailed treatment information was available for all MRIdian linear accelerator (linac) systems and some cobalt systems. RESULTS: Seventeen systems at 16 centers delivered 5736 courses and 36,389 fractions (fraction details unavailable for 1223 cobalt courses), of which 21.1% were adapted. Ultra-hypofractionation (UHfx) (1-5 fractions) was used in 70.3% of all courses. At least one adaptive fraction was used for 38.5% of courses (average 1.7 adapted fractions/course), with higher oART use in UHfx dose schedules (47.7% of courses, average 1.9 adapted fractions per course). The most commonly treated organ sites were pancreas (20.7%), liver (16.5%), prostate (12.5%), breast (11.5%), and lung (9.4%). Temporal trends show a compounded annual growth rate (CAGR) of 59.6% in treatment courses delivered, with a dramatic increase in use of UHfx to 84.9% of courses in 2020 and similar increase in use of oART to 51.0% of courses. CONCLUSIONS: This is the first comprehensive study reporting patterns of utilization among early adopters of MRIdian in the US. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of adaptive radiation therapy has led to a substantial transition to ultra-hypofractionated regimens. 0.3

    The first reported case of a patient with pancreatic cancer treated with cone beam computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR)

    Get PDF
    BACKGROUND: Online adaptive stereotactic radiotherapy allows for improved target and organ at risk (OAR) delineation and inter-fraction motion management via daily adaptive planning. The use of adaptive SBRT for the treatment of pancreatic cancer (performed until now using only MRI or CT on rails-guided adaptive radiotherapy), has yielded promising outcomes. Herein we describe the first reported case of cone beam CT-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of pancreatic cancer. CASE PRESENTATION: A 61-year-old female with metastatic pancreatic cancer presented for durable palliation of a symptomatic primary pancreatic mass. She was prescribed 35 Gy/5 fractions utilizing CT-STAR. The patient was simulated utilizing an end-exhale CT with intravenous and oral bowel contrast. Both initial as well as daily adapted plans were created adhering to a strict isotoxicity approach in which coverage was sacrificed to meet critical luminal gastrointestinal OAR hard constraints. Kilovoltage cone beam CTs were acquired on each day of treatment and the radiation oncologist edited OAR contours to reflect the patient\u27s anatomy-of-the-day. The initial and adapted plan were compared using dose volume histogram objectives, and the superior plan was delivered. Use of the initial treatment plan would have resulted in nine critical OAR hard constraint violations. The adapted plans achieved hard constraints in all five fractions for all four critical luminal gastrointestinal structures. CONCLUSIONS: We report the successful treatment of a patient with pancreatic cancer treated with CT-STAR. Prior to this treatment, the delivery of ablative adaptive radiotherapy for pancreatic cancer was limited to clinics with MR-guided and CT-on-rails adaptive SBRT technology and workflows. CT-STAR is a promising modality with which to deliver stereotactic adaptive radiotherapy for pancreatic cancer

    Implementing a novel remote physician treatment coverage practice for adaptive radiation therapy during the coronavirus pandemic

    Get PDF
    Purpose: The 2019 coronavirus disease pandemic has placed an increased importance on physical distancing to minimize the risk of transmission in radiation oncology departments. The pandemic has also increased the use of hypofractionated treatment schedules where magnetic resonance-guided online adaptive radiation therapy (ART) can aid in dose escalation. This specialized technique requires increased staffing in close proximity, and thus the need for novel coverage practices to increase physical distancing while still providing specialty care. Methods and Materials: A remote-physician ART coverage practice was developed and described using commercially available software products. Our remote-physician coverage practice provided control to the physician to contour and review of the images and plans. The time from completion of image registration to the beginning of treatment was recorded for 20 fractions before remote-physician ART coverage and 14 fractions after implementation of remote-physician ART coverage. Visual quality was calculated using cross-correlation between the treatment delivery and remote-physician computer screens. Results: For the 14 fractions after implementation, the average time from image registration to the beginning of treatment was 24.9 ± 6.1 minutes. In comparison, the 20 fractions analyzed without remote coverage had an average time of 29.2 ± 9.8 minutes. The correlation between the console and remote-physician screens was Conclusions: Our novel remote-physician ART coverage practice is secure, interactive, timely, and of high visual quality. When using remote physicians for ART, our department was able to increase physical distancing to lower the risk of virus transmission while providing specialty care to patients in need

    Long-term outcomes of follicular variant vs classic papillary thyroid carcinoma

    Get PDF
    The majority of papillary thyroid carcinoma (PTC) cases comprise classic papillary (C-PTC) and follicular variant (FV-PTC) histologic sub-types. Historically, clinical equivalency was assumed, but recent data suggest C-PTC may have poorer outcomes. However, large single-institution series with long-term outcomes of C-PTC and FV-PTC, using modern pathologic criteria for FV-PTC, are needed. Our objective was to compare prevalence and impact of clinicopathologic factors, including BRAF mutation status, on long-term outcomes of C-PTC and FV-PTC. We hypothesized that patients with C-PTC would have higher risk disease features and worse survival outcomes. This retrospective study included 1293 patients treated at a single, US academic institution between 1943 and 2009 with mean follow-up of 8.6 years. All patients underwent either partial or total thyroidectomy and had invasive C-PTC or FV-PTC per modern pathology criteria. Primary study measurements included differences in recurrence-free survival (RFS), disease-specific survival (DSS) and associations with clinicopathologic factors including the BRAF mutation. Compared to FV-PTC, C-PTC was associated with multiple features of high-risk disease (P < 0.05) and significantly reduced RFS and DSS. Survival differences were consistent across univariate, multivariate and Kaplan–Meier analyses. BRAF mutations were more common in C-PTC (P = 0.002). However, on Kaplan–Meier analysis, mutational status did not significantly impact RFS or DSS for patients with either histologic sub-type. C-PTC therefore indicates higher-risk disease and predicts for significantly poorer long-term outcomes when compared to FV-PTC. The nature of this difference in outcome is not explained by traditional histopathologic findings or by the BRAF mutation
    corecore